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INTRODUCTION 

Reconstruction of bone defects due to fractures or resection of benign tumors and bone cysts represents a daily challenge in 
traumatology, orthopaedics, and neurosurgery. Correspondingly, a large variety of different methods of bone substitution has been 
investigated during the last decades. 

Presently, the transplantation of freshly isolated autologous cancellous bone from the iliac crest is still considered the golden standard in 
bone repair, because it guarantees optimal osteogenesis, osteoinduction, and osteoconduction.[1] However, this approach also bears 
some substantial drawbacks. In some cases, the amount of isolated bone material is not sufficient to completely fill larger bone defects. 
Moreover, the overall surgical procedure is longer due to the isolation of the cancellous bone, resulting in increased costs for the health 
care system. Additionally, harvesting of bone autografts can be associated with several complications such as blood loss, haematoma 
formation, fracture, nerve injury, infection, cosmetic defects, and chronic pain at the donor site.[2-5] Alternatively, allografts may serve as 
bone substitutes, however, they raise concerns of immunorejection and transmission of infectious diseases such as HIV and hepatitis C.
[1] 

In order to avoid these disadvantages, a broad spectrum of biomaterials serving as synthetic bone substitutes has been developed during 
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ABSTRACT

The nanocrystalline hydroxyapatite paste Ostim® represents a fully degradable synthetic bone substitute for the filling of bone defects. 
Herein, we investigated in vivo the inflammatory and angiogenic host tissue response to this biomaterial after implantation. For this 
purpose, Ostim was implanted into the dorsal skinfold chambers of Syrian golden hamsters. The hydroxyapatite ceramic Cerabone® 
and isogeneic transplanted cancellous bone served as controls. Angiogenesis, microhemodynamics, microvascular permeability, and 
leukocyte-endothelial cell interaction of the host tissue were analyzed over 2 weeks using intravital fluorescence microscopy. Ostim 
exhibited good biocompatibility comparable to that of Cerabone and cancellous bone, as indicated by a lack of venular leukocyte 
activation after implantation. Cancellous bone induced a more pronounced angiogenic response and an increased microvessel density 
when compared with the synthetic bone substitutes. In contrast to Cerabone, however, Ostim showed a guided neovascularization 
directed toward areas of degradation. Histology confirmed the ingrowth of proliferating vascularized tissue into the hydroxyapatite paste 
at sites of degradation, while the hydroxyapatite ceramic was not pierced by new microvessels. Thus, Ostim represents an injectable 
synthetic bone substitute, which may optimize the conditions for the formation of new bone at sites of bone defects by supporting a 
guided vascularization during biodegradation. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 2007
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the last years. Especially, calcium phosphate ceramics, such as hydroxyapatite, are increasingly introduced in clinical practice because of 
their good biocompatibility and bioactivity.[6] They are available as powders, granules, or blocks. However, these pharmaceutical forms 
are awkward when bone defects are not easily accessible or when a cavity should be filled homogeneously with the biomaterial. Thus, 
injectable bone substitutes, which are degradable over time, have recently been developed in order to guarantee convenient handling 
properties.[7-9] 

Herein, we analyzed in the dorsal skinfold chamber model the injectable bone substitute Ostim® (Ostim 35®; Osartis GmbH & Co. KG, 
Obernburg, Germany), which contains phase pure nanosize hydroxyapatite crystals as a suspension in water. Thus, Ostim represents a 
high viscous, fully degradable bone substitute for the filling of bone defects with a chemical composition and a crystalline structure that is 
essentially identical with the mineral phase of natural bone. 

Using the technique of intravital fluorescence microscopy, the implantation of Ostim into the dorsal skinfold chamber of Syrian golden 
hamsters allows for the repetitive assessment of inflammatory parameters such as leukocyte-endothelial cell interaction. Moreover, it 
enables for the study of the ingrowth of newly developing blood vessels into the biomaterial, which is an essential prerequisite for the 
subsequent formation of new bone. As controls, we have used hydroxyapatite ceramic (Cerabone®; Coripharm GmbH & Co. KG, 
Dieburg, Germany), representing one of the most frequently used synthetic bone substitutes, and isogeneic transplanted cancellous 
bone, the golden standard in bone repair. 

MATERIALS AND METHODS 

Animals 
The experiments were conducted in accordance with the German legislation on protection of animals and the NIH Guidelines for the Care 
and Use of Laboratory Animals (NIH Publication no. 85-23 Rev. 1985), and were approved by the local governmental animal care 
committee. 

Eight- to ten-week-old Syrian golden hamsters with a body weight of 60-80 g were used for the study. The animals were housed one per 
cage and had free access to tap water and standard pellet food (Altromin, Lage, Germany) throughout the experiment. 

Preparation of the Dorsal Skinfold Chamber 
The chamber preparation contains one layer of striated muscle, subcutis, and skin, and allows for intravital microscopic observation of the 
microcirculation in the awake animals over a prolonged period of time. The chamber technique and its implantation procedure have been 
described previously in detail.[10] Briefly, under sodium pentobarbital anesthesia (50 mg/kg body weight, i.p.), two symmetrical titanium 
frames were implanted on the extended dorsal skinfold of the hamsters, so that they sandwich the double layer of skin. For this, one layer 
of skin was completely removed in a circular area of 15 mm in diameter, and the remaining layers (consisting of striated skin muscle 
and subcutaneous tissue) were covered with a removable coverslip incorporated into one of the titanium frames. After the preparation, 
the animals were allowed to recover from anesthesia and surgery for at least 48 h. The animals tolerated the chamber and its preparation 
well, as indicated by a normal feeding and sleeping habit. 

Preparation and Implantation of Bone Substitutes 
Ostim (Osartis GmbH & Co. KG) is a viscous paste, which contains phase pure nanosize hydroxyapatite crystals as a suspension in 
water [Figure 1(A)]. It is synthesized by a precipitation reaction adding orthophosphoric acid to a calcium hydroxide suspension. The 
chemical reaction at room temperature leads to a white suspension containing 5-6% of nanosize hydroxyapatite crystals. The suspension 
is then concentrated by filtration and evaporation, resulting in a solid content of 35%. The crystalline phase pure nanosize hydroxyapatite 
has a calcium/phosphate ratio of 1.67. The final paste of high viscosity prevents wash out effects by blood and is degraded by 
phagocytosis after implantation.  

Before implantation into the dorsal skinfold chamber, Ostim could be easily compressed in-between two microscope slides to a thickness 
of 1 mm and subsequently be cut with a scalpel into small rectangular pieces ( 3 × 2.5 mm2). In contrast, the granules (diameter: 

0.5-1.6 mm) of Cerabone (Coripharm GmbH & Co. KG) are made of a solid hydroxyapatite ceramic (pentacalcium hydroxide 
triphosphate) with a pore size of 0.1-1.5 mm [Figure 1(B)]. 

For implantation of bone substitutes, the chamber-equipped animals were immobilized in a plexiglas tube. The cover glass of the dorsal 
skinfold chamber was removed and comparable amounts of 7-10 mm3 of the nanocrystalline hydroxyapatite paste Ostim, the 
hydroxyapatite ceramic Cerabone (3-4 granules), or freshly isolated cancellous bone from the tibia of a donor animal were placed onto 
the striated muscle tissue within the center of each chamber (Figure 2).  

Figure 1. TEM image of Ostim® (A) and REM image of Cerabone® (B). Ostim is a 
viscous paste, which contains phase pure nanosize hydroxyapatite crystals as a 
suspension in water (A). In contrast, the granules of Cerabone are synthesized of a 
solid hydroxyapatite ceramic (pentacalcium hydroxide triphosphate) with a pore 
size of 0.1-1.5 mm (B). Scale bars: A = 250 nm; B = 350 m. 
[Normal View 47K | Magnified View 197K]

Figure 2. Dorsal skinfold chambers of Syrian golden hamsters directly after 
implantation of bone substitutes consisting of the nanocrystalline hydroxyapatite 
paste Ostim® (A), the hydroxyapatite ceramic Cerabone® (B), and isolated isogeneic 
cancellous bone (C). Scale bars: 1.6 mm. [Color figure can be viewed in the online 
issue, which is available at www.interscience.wiley.com.] 
[Normal View 86K | Magnified View 351K]
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Intravital Epi-Illumination Fluorescence Microscopy 
For in vivo microscopic observation, the hamsters were again immobilized in a plexiglas tube and the dorsal skinfold preparation was 
attached to the microscope stage. After retrobulbary i.v. injection of 0.1 mL of 5% fluorescein isothiocyanate (FITC)-labeled dextran 
150,000 (contrast enhancement by staining of blood plasma) and 0.1 mL of 0.1% rhodamine 6G (Sigma, Deisenhofen, Germany) (direct 
staining of leukocytes), intravital fluorescence microscopy was performed using a modified Leitz Orthoplan microscope with a 100-W 
mercury lamp attached to a Ploemo-Pak illuminator with blue, green, and ultraviolet filter blocks (Leitz, Wetzlar, Germany) for epi-
illumination. Images were recorded by a charge-coupled device video camera (CF8/1 FMC; Kappa GmbH, Gleichen, Germany) and 
transferred to a video system for off-line evaluation. With the use of 4×, 6.3×, 10×, and 20× long-distance objectives (Leitz), 
magnifications of 86×, 136×, 216×, and 432× were achieved on a 14 in. video screen (PVM 1444; Sony, Tokyo, Japan). 

Microcirculatory Analysis 
Quantitative off-line analysis of the videotapes was performed by means of the computer-assisted image analysis system CapImage 
(Zeintl, Heidelberg, Germany). Leukocyte-endothelial cell interaction, microhemodynamics, and macromolecular leakage were assessed 
at a magnification of 432× in four different microvascular regions of interest (ROIs) in the border zone of the implants. In each ROI, 1-3 
postcapillary or collecting venules (inner diameter: 30-40 m) were selected for measurements. 

Leukocytes were stained in vivo with the fluorescent dye rhodamine 6G and classified according to their interaction with the vascular 
endothelium as adherent, rolling, or free-flowing cells, as described previously.[11] Adherent leukocytes were defined in each vessel 
segment as cells that did not move or detach from the endothelial lining within a specified observation period of 20 s, and are given as 
number of cells per square millimeter of endothelial surface, calculated from the diameter and length of the vessel segment studied, 
assuming a cylindrical vessel geometry. Rolling leukocytes were defined as cells moving with a velocity less than two-fifths of the 
centerline velocity, and are given as number of cells per minute, passing a reference point within the microvessel. 

Diameters, centerline velocity, volumetric blood flow, and wall shear rate were determined in those venules in which leukocyte-endothelial 
cell interaction was analyzed. Diameters (d) were measured in micrometers perpendicularly to the vessel path. Centerline velocity (v) was 
analyzed by the computer-assisted image analysis system using the line shift method. Volumetric blood flow was calculated by Q (pL/s) = 

(d/2)2(v/1.6), where 1.6 represents the Baker-Wayland factor[12] to correct for the parabolic velocity profile in microvessels with 
diameters >20 m. Wall shear (y) rate was calculated based on the Newtonian definition: y = 8v/d. 

Macromolecular leakage served as a parameter of microvascular permeability and, thus, endothelial integrity. For analysis, the 
macromolecular fluorescent dye FITC-labeled dextran 150,000 was injected intravenously, and grey levels in the tissue directly adjacent 
to the venular vessel wall (E1) and in the marginal cell free plasma layer within the vessel (E2) were determined densitometrically. 
Extravasation (E) was then calculated as E = E1/E2. 

Angiogenesis was analyzed at a magnification of 216× in eight different microvascular ROIs in the border zone and the center of the 
implants. ROIs were defined as angiogenesis positive,  when signs of blood vessel development, that is capillary sprouts or newly 
formed microvessels growing into the implants, could be identified. Additionally, more detailed information about the extent of vascular 
ingrowth into the different ROIs of the implants was provided by the quantitative assessment of the microvessel density, that is the length 
of newly formed blood vessels per area of observation, given in cm/cm2. 

Experimental Protocol 
For intravital fluorescence microscopy, dorsal skinfold chambers were prepared in a total of 21 Syrian golden hamsters. Subsequently, 
the bone substitutes Ostim (n = 7), Cerabone (n = 7), or isogeneic cancellous bone (n = 7) were implanted into the skinfold chambers, 
taking care to avoid contamination, mechanical irritation, or damage of the chamber. The macroscopic appearance of the skinfold 
chamber preparations and the bone substitutes were documented daily. Intravital fluorescence microscopic assessment of angiogenesis, 
microhemodynamics, leukocyte-endothelial cell interaction, and macromolecular leakage was performed before (baseline) as well as 20 
min, 3, 6, 10, and 14 days after implantation. At the end of the in vivo experiments, that is at day 14, the animals were sacrificed by an 
overdose of the anesthetic, and histological examinations of the dorsal skinfold chamber preparations were performed. 

Histology and Immunohistochemistry 
For light microscopy, formalin-fixed specimens of the dorsal skinfold chambers were embedded in paraffin at day 14 after transplantation. 
Four-micrometer-thick sections were cut and stained with hematoxylin and eosin according to standard procedures. For 
immunohistochemical detection of proliferating cells within the newly developing granulation tissue surrounding the implanted bone 
substitutes, proliferating cell nuclear antigen (PCNA) staining was performed by a mouse monoclonal anti-PCNA antibody as primary 
antibody (1:50; Dako Cytomation). This was followed by a HRP-conjugated goat anti-mouse antibody (1:200; Amersham Biosciences). 
3,3  Diaminobenzidine was used as chromogen. The sections were counter-stained with hemalaun and examined by light microscopy 
(BX60; Olympus, Hamburg, Germany). 

Electron Microscopy 
The material architecture of the synthetic bone substitutes Ostim and Cerabone was studied by transmission electron microscopy (TEM) 
or reflection electron microscopy (REM), respectively. For this purpose, the hydroxyapatite paste Ostim was diluted with water to a 
concentration of 0.01-0.02%, sprayed on a coated microscope grid, and dried. Subsequently, the biomaterial was examined in a 
transmission electron microscope at 10-15 kV (Philips CM 12 STEM®; FEI Company, Eindhoven, The Netherlands). For REM of 
Cerabone, the fractured surface of a Cerabone block was sputtered with platinum and the surface topography was imaged at 5 kV 
(Philips ESEM-FEG; Philips, Hamburg, Germany). 

Statistics 
After testing the data for normal distribution and equal variance, differences between groups were analyzed by ANOVA, followed by the 
Dunnett test for multiple comparisons. To test for time effects, ANOVA for repeated measures was applied. This was followed by the 
paired Student's t test, including correction of the -error according to Bonferroni probabilities for repeated measurements (SigmaStat; 
Jandel Corporation, San Rafael, CA). All values are expressed as means ± SEM. Statistical significance was accepted for a value of p < 
0.05. 

RESULTS 
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Inflammation 
Under baseline conditions, numbers of adherent leukocytes in postcapillary and collecting venules of the dorsal skinfold chamber ranged 
from 90 to 150 cells/mm2 in the three experimental groups and did not markedly increase after implantation of the bone substitutes (Table 
I; Figure 2). Correspondingly, numbers of rolling leukocytes ranged from 20 to 31 cells/min during the experiment without any significant 
differences over time and between the three groups (Table I). The lack of activation of leukocytes after implantation indicates an 
adequate biocompatibility of Ostim (Figure 3), comparable to that of Cerabone and cancellous bone.  

Macromolecular leakage from the microvasculature of the border zones of the bone substitutes showed a progressive increase 
throughout the observation period (Figure 4) due to an altered integrity of the venular endothelial lining cells. Interestingly, this was most 
pronounced in dorsal skinfold chambers with implanted cancellous bone revealing a macromolecular leakage of 0.66 ± 0.04 at day 14, 
which was significantly higher compared with that observed in Ostim implants (0.50 ± 0.05; p < 0.05) (Figure 4).  

Microhemodynamics 
Analysis of microhemodynamics revealed constant venular diameters of 30-40 m without any differences between the groups (Table II). 
Furthermore, centerline velocity, volumetric blood flow, and shear rates of venules in direct vicinity to the implants did not change during 
the 14-day observation period and were comparable in all experimental groups (Table II).  

Figure 3. Intravital fluorescence microscopy of the microcirculation within the 
border zone of an Ostim® implant (asterisk) at day 6 after transfer onto the striated 
muscle tissue of the dorsal skinfold chamber. Note that there are only a few 
activated leukocytes adhering at the endothelium of postcapillary venules (arrows), 
indicating an adequate biocompatibility of the bone substitute. (A) Blue-light epi-
illumination with contrast enhancement by 5% FITC-labeled dextran 150,000 i.v. for 
visualization of the microvasculature. (B) Green-light epi-illumination for 
visualization of rhodamine 6G-stained leukocytes. Scale bars: 170 m. 
[Normal View 41K | Magnified View 162K]

 
Table I. Adherent and Rolling Leukocytes in Postcapillary and Collecting Venules Within the Border 
Zones of Ostim®, Cerabone®, and Cancellous Bone Before (BL, Baseline) as well as 20 min, 3, 6, 10, 

and 14 Days After Implantation Into the Dorsal Skinfold Chamber of Syrian Golden Hamsters

Adherent Leukocytes (cells/mm2) Rolling Leukocytes (cells/min)

Ostim Cerabone Cancellous Bone Ostim Cerabone Cancellous Bone

BL 94.4 ± 12.1 120.1 ± 20.7 147.1 ± 33.5 20.9 ± 1.2 24.1 ± 2.6 27.3 ± 3.1
20 min 147.3 ± 27.0 197.6 ± 36.5 182.1 ± 25.3 23.4 ± 4.2 17.0 ± 2.9 20.2 ± 1.5
3 days 122.7 ± 18.8 85.9 ± 11.9 102.5 ± 17.7 26.6 ± 3.9 23.1 ± 2.3 21.0 ± 2.7
6 days 127.2 ± 32.8 103.6 ± 18.0 97.4 ± 18.2 24.3 ± 3.5 31.3 ± 4.7 28.0 ± 4.3
10 days 90.9 ± 12.3 77.6 ± 7.3 80.1 ± 13.0 31.3 ± 6.1 22.8 ± 3.0 20.8 ± 2.4
14 days 131.9 ± 19.3# 94.5 ± 13.7 60.7 ± 8.3+ 29.2 ± 5.9 25.1 ± 2.3 23.1 ± 3.7

   Data are given as mean ± SEM. 
  + p < 0.05 versus BL. 

  # p < 0.05 versus cancellous bone at corresponding time points. 

Figure 4. (A,B) Intravital fluorescence microscopy of postcapillary venules of the 
dorsal skinfold chamber preparation before implantation of cancellous bone (A, 
baseline) and at day 14 after implantation (B). Fourteen days after implantation of 
cancellous bone, extravasation of the intravenously injected macromolecular 
fluorescent dye FITC-labeled dextran 150,000 is increased, indicating an altered 
integrity of the endothelial cells lining the vessel walls. Blue-light epi-illumination 
with contrast enhancement by 5% FITC-labeled dextran 150,000 i.v. Scale bars: 50 

m. (C) Macromolecular leakage as a parameter of microvascular permeability of 
postcapillary and collecting venules within ROIs of the border zones of Ostim® 
(black circles), Cerabone® (grey circles), and cancellous bone (white circles) before 
(BL, baseline) as well as 20 min, 3, 6, 10, and 14 days after implantation into the 
dorsal skinfold chamber of Syrian golden hamsters. Mean ± SEM. +p < 0.05 versus 
BL; #p < 0.05 versus cancellous bone at corresponding time points. 
[Normal View 28K | Magnified View 79K]

 
Table II. Diameter, Centerline Velocity, Volumetric Blood Flow, and Shear Rate of Postcapillary and Collecting Venules 
Within the Border Zones of Ostim®, Cerabone®, and Cancellous Bone Before (BL, Baseline) as well as 20 min, 3, 6, 10, 

and 14 days After Implantation Into the Dorsal Skinfold Chamber of Syrian Golden Hamsters

Diameter ( m) Centerline Velocity ( m/s)
Volumetric Blood Flow 

(pL/s) Shear Rate (s-1)
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Angiogenesis and Material Incorporation 
First signs of angiogenesis could be observed within the border zones of the bone substitutes at day 3 after implantation. These were 
characterized by formation of capillary buds and protrusion of capillary sprouts, which originated primarily from venular segments of the 
striated muscle capillaries and postcapillary venules of the host tissue [Figures 5 and 6(A)]. During the following days, these sprouts 
developed to newly formed blood vessels, ingrowing into the central areas of the bone substitutes [Figures 5 and 6(B)]. Of interest, the 
angiogenic process was markedly accelerated in cancellous bone, in which 100% of the analyzed ROIs in the center of the implants were 
angiogenesis positive at days 10 and 14. At this time point, substantial areas in the center of Ostim and Cerabone implants still lacked 
newly formed blood vessels [Figures 5 and 6(B)]. In addition, the microvessel density of newly developing microvascular networks in the 
border and the center of cancellous bone was significantly higher (p < 0.05) at days 10 and 14 when compared with that of Ostim and 
Cerabone implants [Figure 6(C,D)]. However, although the overall microvessel density of Ostim was lower compared with cancellous 
bone, the degradable material exhibited a guided neovascularization, which was directed toward areas of degradation (Figure 7).  

Ostim Cerabone
Cancellous 

Bone Ostim Cerabone
Cancellous 

Bone Ostim Cerabone
Cancellous 

Bone Ostim Cerabone
Cancellous 

Bone

BL 34.0 ± 
1.8

31.1 ± 1.4 33.1 ± 1.5 278 ± 
18

262 ± 41 240 ± 43 161 ± 
20

125 ± 23 130 ± 26 66.1 ± 
4.5

68.8 ± 
11.4

58.4 ± 10.6

20 
min

37.8 ± 
1.6

34.2 ± 2.3 37.5 ± 2.1 339 ± 
59

317 ± 53 263 ± 39 238 ± 
43

185 ± 36 180 ± 29 72.8 ± 
13.7

76.6 ± 
13.9

58.1 ± 10.2

3 
days

38.6 ± 
2.6

33.1 ± 2.3 31.9 ± 1.5 330 ± 
49

257 ± 44 275 ± 35 267 ± 
69

158 ± 39 144 ± 26 67.4 ± 
7.6

60.1 ± 8.8 68.2 ± 7.0

6 
days

38.9 ± 
2.1

36.8 ± 1.5 38.6 ± 3.3 381 ± 
38

375 ± 49 331 ± 41 287 ± 
37

258 ± 47 265 ± 63 79.4 ± 
10.1

81.5 ± 
10.7

69.7 ± 9.8

10 
days

36.9 ± 
2.3

31.2 ± 1.1 34.9 ± 1.4 222 ± 
34

325 ± 61 320 ± 42 155 ± 
30

163 ± 42 198 ± 36 48.5 ± 
7.5

82.2 ± 
13.4

72.8 ± 8.8

14 
days

31.8 ± 
1.6

35.5 ± 2.0 38.9 ± 2.7 240 ± 
26

351 ± 58 363 ± 49 124 ± 
21

235 ± 63 294 ± 66 60.7 ± 
6.2

78.8 ± 
11.2

74.7 ± 8.5

   Data are given as mean ± SEM. 

Figure 5. Intravital fluorescence microscopy of Ostim® at 20 min (A) as well as day 3 
(B) and day 14 (C,D) after implantation into the dorsal skinfold chamber of a Syrian 
golden hamster. At day 3, first signs of angiogenesis can be observed in the border 
zone of the implant, characterized by capillary sprouts (B, arrow heads) ingrowing 
into the bone substitute. At day 14, the border zone of the implant is already well 
vascularized (C), while areas in the center of the implant still lack newly formed 
blood vessels (C, asterisks). However, higher magnification of the bone substitute 
demonstrates that the angiogenic process continues, as indicated by capillary 
sprouts (D, arrow heads) ingrowing into avascular areas of the center of the implant 
(D). Note that the newly formed microvascular network of the implant is drained by 
postcapillary vessels (C, arrows), which connect to the parallelly arranged striated 
muscle capillaries (C, arrow heads) of the skinfold chamber. Blue light epi-
illumination with contrast enhancement by 5% FITC-labeled dextran 150,000 i.v. 
Scale bars: A = 270 m; B = 105 m; C = 170 m; D = 105 m. 
[Normal View 73K | Magnified View 303K]

Figure 6. (A,B) Time course of angiogenesis after implantation of Ostim® (black 
circles), Cerabone® (grey circles), and cancellous bone (white circles) expressed as 
percentage of angiogenesis positive  regions of interest (ROIs) within the border 
zone (A) and the center (B) of the implants before (BL, baseline) as well as 20 min, 3, 
6, 10, and 14 days after implantation into the dorsal skinfold chamber of Syrian 
golden hamsters. ROIs were defined as angiogenesis positive,  when signs of 
blood vessel development, that is capillary buds and sprouts or newly formed 
microvessels, could be identified. (C,D) Quantitative assessment of the microvessel 
density, given as cm/cm2, in ROIs within the border zone (C) and the center (D) of 
Ostim (black circles), Cerabone (grey circles), and cancellous bone (white circles) 
before (BL, baseline) as well as 20 min, 3, 6, 10, and 14 days after implantation into 
the dorsal skinfold chamber of Syrian golden hamsters. Mean ± SEM. +p < 0.05 
versus BL; #p < 0.05 versus cancellous bone at corresponding time points. 
[Normal View 47K | Magnified View 131K]

Figure 7. Intravital fluorescence microscopy of Ostim® (A,B), Cerabone® (C), and 
cancellous bone (D) at day 14 after implantation into the dorsal skinfold chamber of 
a Syrian golden hamster. The lower magnification of Ostim (A) displays areas of 
material degradation (arrows). The higher magnification of these areas (B) reveals a 
dense ingrowth of newly formed blood vessels through the biomaterial, creating 
microvascular networks surrounding the remaining nondegraded Ostim fragments. 
In contrast to Ostim, capillaries grow only over the surface of Cerabone (C), while 
the granulation tissue surrounding the fragments of isolated cancellous bone is 
pierced by many blood vessels (D). Blue light epi-illumination with contrast 
enhancement by 5% FITC-labeled dextran 150,000 i.v. Scale bars: A = 270 m; B-D = 
105 m. 
[Normal View 78K | Magnified View 310K]
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Histology of the dorsal skinfold chamber preparations at day 14 revealed the formation of a vascularized granulation tissue surrounding 
the bone substitutes. Of interest, this newly formed tissue did not show infiltration of inflammatory cells (Figure 8), indicating an adequate 
biocompatibility of the implanted materials. Because Ostim is a fully degradable nanocrystalline hydroxyapatite paste, newly developing 
blood vessels could also directly invade the biomaterial in areas of degradation, which was not observed in hydroxyapatite ceramic 
Cerabone [Figure 8(A-D)]. Corresponding to our intravital microscopic findings, implanted cancellous bone exhibited granulation tissue 
with a higher blood vessel density [Figure 8(E,F)]. Immunohistochemical staining of PCNA revealed a high proliferating activity of the 
granulation tissue in all three groups (Figure 9). Detailed analysis indicated that almost all cells surrounding the cancellous bone were 
PCNA-positive, indicating an accelerated incorporation of cancellous bone into the host tissue when compared with the synthetic bone 
substitutes (Figure 9).  

DISCUSSION 

In the present study, we have analyzed in vivo the biocompatibility and incorporation of the injectable nanocrystalline hydroxyapatite 
paste Ostim during the first 14 days after implantation. We could demonstrate that Ostim does not induce an acute inflammatory 
response of the surrounding host tissue, as indicated by a lack of leukocyte activation in blood vessels located in the close vicinity of the 
implant. Accordingly, there was no infiltration of the biomaterial by inflammatory cells. Moreover, microhemodynamic parameters of the 
host microvasculature were not deteriorated after implantation of the biomaterial. Thus, the biocompatibility of Ostim was comparable to 
that of hydroxyapatite ceramic, which presently represents one of the most commonly used synthetic bone substitutes in clinical practice.
[13][14] 

The good biocompatibility of Ostim and Cerabone may be attributed to the fact that both bone substitutes are composed of 
hydroxyapatite, which is similar to the crystalline phase of natural bone.[15] However, in contrast to the hydroxyapatite ceramic 
Cerabone, Ostim offers better handling properties, because it is a viscous paste, which also allows for the filling of complex bone defects 
that are difficult to access. Moreover, an injectable bone substitute offers the possibility of implantation by percutaneous surgery. 

In the past, newly developed bone substitutes have been tested in vivo using numerous experimental models, most of them involving 
larger animals such as dogs,[16] goats,[17] or rabbits.[18] In our study, we have used the dorsal skinfold chamber model of Syrian golden 
hamsters, which bears the advantages of convenient handling and lower costs. Of interest, in this model, the bone substitutes are not 
directly implanted into a bone defect, but onto the striated muscle tissue within the chamber, guaranteeing a permanent access to the 
implants for continuous in vivo analyses. Thus, this model in combination with the technique of high resolution fluorescence microscopy 
allows for the repetitive investigation of vascular ingrowth into the implanted bone substitutes from the surrounding soft tissue and 
changes of inflammatory and microhemodynamic parameters over time. During the last years, the skinfold chamber model has already 
been successfully used to test the material properties of various biomaterials including prosthetic vascular grafts,[19][20] arthroplasty 
alloys,[21][22] surgical meshes,[23] and scaffolds for tissue engineering.[24] 

Beside a good biocompatibility, synthetic bone substitutes should ensure the formation of new bone after their implantation. In fact, an 
optimal synthetic bone substitute is reabsorbed and replaced by vital bone over time.[25] A major prerequisite for this process is 
angiogenesis, that is the development of new capillaries from preexisting blood vessels. Because newly formed blood vessels transport 
oxygen and nutrients into the implanted bone substitute, a physiological milieu is created, which supports the ingrowth of bone cells, but 
also the differentiation of pluripotential stem cells from the surrounding tissue to an osteoblastic phenotype.[26][27] 

In our study, both synthetic bone substitutes, Ostim and Cerabone, were able to induce angiogenesis. In contrast to the nondegradable 
Cerabone, however, Ostim revealed areas of degradation already at day 14 after implantation. Within these areas, vascularized 
granulation tissue could directly invade the biomaterial. This guided vascularization may accelerate the formation of new bone in bone 
defects, because osteoblasts are facilitated to migrate into these vascularized areas, where the remaining nondegraded Ostim fragments 
serve as a scaffold for the invading cells. In this process, the newly developing blood vessels play an important role, because it has 
previously been reported that endothelial cells stimulate the differentiation of preosteoblasts to osteoblasts by the expression of 
osteotropic growth factors, such as endothelin-1 and IGF-1.[28] Vice versa, the expression of VEGF by osteoblasts further sustains the 
proliferation of endothelial cells and, thus, the formation of new blood vessels.[29] 

In comparison to Ostim and Cerabone, vascularization of isogeneic transplanted cancellous bone was accelerated and more pronounced, 
as indicated by a significantly higher microvessel density of the newly developing capillary networks. This observation is most probably 
due to the fact that the bone marrow surrounding the isolated cancellous bone contains a high amount of regenerative cell types, such as 

Figure 8. Hematoxylin-eosin stained cross sections of Ostim® (A), Cerabone® (C), 
and cancellous bone (E) at day 14 after implantation onto the striated muscle tissue 
(arrows) of the dorsal skinfold chamber. Higher magnification reveals the formation 
of granulation tissue with newly developed blood vessels (arrow heads) 
surrounding the Ostim (B), Cerabone (D), and cancellous bone implants (F). In 
contrast to Cerabone, Ostim exhibits areas of degradation (asterisks), where blood 
vessels can directly invade the biomaterial (A,B). Cancellous bone is surrounded by 
a richly vascularized granulation tissue with an increased microvessel density and a 
higher cellular content, when compared with the synthetic bone substitutes Ostim 
and Cerabone. Scale bars: A,C = 110 m; E = 170 m; B,D,F = 55 m. [Color figure 
can be viewed in the online issue, which is available at 
www.interscience.wiley.com.] 
[Normal View 190K | Magnified View 809K]

Figure 9. Immunohistochemical detection of PCNA-positive cells within the 
granulation tissue surrounding Ostim® (A, asterisk), Cerabone® (B, asterisk), and 
cancellous bone (C, asterisk) at day 14 after implantation into the dorsal skinfold 
chamber. Note that in the major fraction of cells surrounding Ostim and Cerabone 
positive PCNA staining can be observed (A,B). In cancellous bone almost all cells 
surrounding the implant show proliferative activity (C). Scale bars: A-C = 25 m. 
[Color figure can be viewed in the online issue, which is available at 
www.interscience.wiley.com.] 
[Normal View 88K | Magnified View 377K]
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stem cells or endothelial progenitor cells, and different growth factors, stimulating and accelerating the development of new blood 
vessels.[30][31] Correspondingly, the newly formed granulation tissue surrounding the cancellous bone exhibited a higher content of 
proliferating cells, indicating an accelerated incorporation of the material into the host tissue. In line with this, the macromolecular leakage 
as a parameter of microvascular permeability increased to highest values in dorsal skinfold chambers with implanted cancellous bone, 
because the angiogenic process is associated with an altered endothelial integrity of the microvasculature due to the disruption of the 
basal membrane and the migration of endothelial cells into the surrounding tissue.[32] 

In summary, we introduce in the present study the dorsal skinfold chamber as an ideal tool to study in vivo the inflammatory and 
angiogenic response to implanted bone substitutes. Herein, we could demonstrate that the nanocrystalline hydroxyapatite paste Ostim is 
characterized by a good biocompatibility, which is comparable to that of hydroxyapatite ceramic and cancellous bone. In comparison to 
Cerabone, Ostim offers better handling properties and is degraded in a short time period after implantation, supporting the ingrowth of 
granulation tissue with newly formed blood vessels into the biomaterial. Accordingly, implantation of Ostim may optimize the conditions 
for the formation of new bone, and, thus, may accelerate and improve the healing of bone defects. 
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Figure 1. TEM image of Ostim® (A) and REM image of Cerabone® (B). Ostim is a viscous paste, which contains phase pure 
nanosize hydroxyapatite crystals as a suspension in water (A). In contrast, the granules of Cerabone are synthesized of a solid 
hydroxyapatite ceramic (pentacalcium hydroxide triphosphate) with a pore size of 0.1-1.5 mm (B). Scale bars: A = 250 nm; B 
= 350 m. 
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Figure 2. Dorsal skinfold chambers of Syrian golden hamsters directly after implantation of bone substitutes consisting of the nanocrystalline hydroxyapatite paste Ostim® (A), the hydroxyapatite ceramic 
Cerabone® (B), and isolated isogeneic cancellous bone (C). Scale bars: 1.6 mm. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.] 
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Figure 3. Intravital fluorescence microscopy of the microcirculation within the border zone of an Ostim® implant (asterisk) at 
day 6 after transfer onto the striated muscle tissue of the dorsal skinfold chamber. Note that there are only a few activated 
leukocytes adhering at the endothelium of postcapillary venules (arrows), indicating an adequate biocompatibility of the bone 
substitute. (A) Blue-light epi-illumination with contrast enhancement by 5% FITC-labeled dextran 150,000 i.v. for visualization 
of the microvasculature. (B) Green-light epi-illumination for visualization of rhodamine 6G-stained leukocytes. Scale bars: 170 

m. 
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Figure 4. (A,B) Intravital fluorescence microscopy of postcapillary venules of the dorsal skinfold chamber 
preparation before implantation of cancellous bone (A, baseline) and at day 14 after implantation (B). Fourteen 
days after implantation of cancellous bone, extravasation of the intravenously injected macromolecular 
fluorescent dye FITC-labeled dextran 150,000 is increased, indicating an altered integrity of the endothelial 
cells lining the vessel walls. Blue-light epi-illumination with contrast enhancement by 5% FITC-labeled dextran 
150,000 i.v. Scale bars: 50 m. (C) Macromolecular leakage as a parameter of microvascular permeability of 
postcapillary and collecting venules within ROIs of the border zones of Ostim® (black circles), Cerabone® 
(grey circles), and cancellous bone (white circles) before (BL, baseline) as well as 20 min, 3, 6, 10, and 14 days 
after implantation into the dorsal skinfold chamber of Syrian golden hamsters. Mean ± SEM. +p < 0.05 versus 
BL; #p < 0.05 versus cancellous bone at corresponding time points. 
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Figure 5. Intravital fluorescence microscopy of Ostim® at 20 min (A) as well as day 3 (B) and day 14 (C,D) after implantation into the dorsal skinfold chamber of a Syrian golden hamster. At day 3, 
first signs of angiogenesis can be observed in the border zone of the implant, characterized by capillary sprouts (B, arrow heads) ingrowing into the bone substitute. At day 14, the border zone of the 
implant is already well vascularized (C), while areas in the center of the implant still lack newly formed blood vessels (C, asterisks). However, higher magnification of the bone substitute 
demonstrates that the angiogenic process continues, as indicated by capillary sprouts (D, arrow heads) ingrowing into avascular areas of the center of the implant (D). Note that the newly formed 
microvascular network of the implant is drained by postcapillary vessels (C, arrows), which connect to the parallelly arranged striated muscle capillaries (C, arrow heads) of the skinfold chamber. 
Blue light epi-illumination with contrast enhancement by 5% FITC-labeled dextran 150,000 i.v. Scale bars: A = 270 m; B = 105 m; C = 170 m; D = 105 m. 
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Figure 6. (A,B) Time course of angiogenesis after implantation of Ostim® (black circles), Cerabone® (grey circles), and cancellous bone (white circles) expressed as percentage of angiogenesis 
positive  regions of interest (ROIs) within the border zone (A) and the center (B) of the implants before (BL, baseline) as well as 20 min, 3, 6, 10, and 14 days after implantation into the dorsal 
skinfold chamber of Syrian golden hamsters. ROIs were defined as angiogenesis positive,  when signs of blood vessel development, that is capillary buds and sprouts or newly formed microvessels, 
could be identified. (C,D) Quantitative assessment of the microvessel density, given as cm/cm2, in ROIs within the border zone (C) and the center (D) of Ostim (black circles), Cerabone (grey 
circles), and cancellous bone (white circles) before (BL, baseline) as well as 20 min, 3, 6, 10, and 14 days after implantation into the dorsal skinfold chamber of Syrian golden hamsters. Mean ± 
SEM. +p < 0.05 versus BL; #p < 0.05 versus cancellous bone at corresponding time points. 
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Figure 7. Intravital fluorescence microscopy of Ostim® (A,B), Cerabone® (C), and cancellous bone (D) at day 14 after implantation into the dorsal skinfold chamber of a Syrian golden hamster. 
The lower magnification of Ostim (A) displays areas of material degradation (arrows). The higher magnification of these areas (B) reveals a dense ingrowth of newly formed blood vessels through 
the biomaterial, creating microvascular networks surrounding the remaining nondegraded Ostim fragments. In contrast to Ostim, capillaries grow only over the surface of Cerabone (C), while the 
granulation tissue surrounding the fragments of isolated cancellous bone is pierced by many blood vessels (D). Blue light epi-illumination with contrast enhancement by 5% FITC-labeled dextran 
150,000 i.v. Scale bars: A = 270 m; B-D = 105 m. 
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Figure 8. Hematoxylin-eosin stained cross sections of Ostim® (A), Cerabone® (C), and cancellous bone (E) at day 14 after implantation onto the striated muscle tissue (arrows) of the dorsal 
skinfold chamber. Higher magnification reveals the formation of granulation tissue with newly developed blood vessels (arrow heads) surrounding the Ostim (B), Cerabone (D), and cancellous bone 
implants (F). In contrast to Cerabone, Ostim exhibits areas of degradation (asterisks), where blood vessels can directly invade the biomaterial (A,B). Cancellous bone is surrounded by a richly 
vascularized granulation tissue with an increased microvessel density and a higher cellular content, when compared with the synthetic bone substitutes Ostim and Cerabone. Scale bars: A,C = 110 

m; E = 170 m; B,D,F = 55 m. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.] 
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Figure 9. Immunohistochemical detection of PCNA-positive cells within the granulation tissue surrounding Ostim® (A, asterisk), Cerabone® (B, asterisk), and cancellous bone (C, asterisk) at day 14 after 
implantation into the dorsal skinfold chamber. Note that in the major fraction of cells surrounding Ostim and Cerabone positive PCNA staining can be observed (A,B). In cancellous bone almost all cells 
surrounding the implant show proliferative activity (C). Scale bars: A-C = 25 m. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.] 
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